TRANS4: a new coupled electron/proton transport code – comparison to observations above Svalbard using ESR, DMSP and optical measurements

نویسندگان

  • C. Simon
  • J. Lilensten
  • J. Moen
  • J. M. Holmes
  • Y. Ogawa
  • K. Oksavik
  • W. F. Denig
چکیده

We present for the first time a numerical kinetic/fluid code for the ionosphere coupling proton and electron effects. It solves the fluid transport equations up to the eighth moment, and the kinetic equations for suprathermal particles. Its new feature is that for the latter, both electrons and protons are taken into account, while the preceding codes (TRANSCAR) only considered electrons. Thus it is now possible to compute in a single run the electron and ion densities due to proton precipitation. This code is successfully applied to a multi-instrumental data set recorded on 22 January 2004. We make use of measurements from the following set of instruments: the Defence Meteorological Satellite Program (DMSP) F-13 measures the precipitating particle fluxes, the EISCAT Svalbard Radar (ESR) measures the ionospheric parameters, the thermospheric oxygen lines are measured by an all-sky camera and the Hα line is given by an Ebert-Fastie spectrometer located at Ny-Ålesund. We show that the code computes the Hα spectral line profile with an excellent agreement with observations, providing some complementary information on the physical state of the atmosphere. We also show the relative effects of protons and electrons as to the electron densities. Computed electron densities are finally compared to the direct ESR measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton-electron precipitation eects on the electron production and density above EISCAT (Tromsù) and ESR

The suprathermal particles, electrons and protons, coming from the Sun and precipitating into the high-latitude atmosphere are an energy source for the Earth's ionosphere. They interact with the ambient thermal gas through inelastic and elastic collisions. Most of the physical quantities perturbed by the precipitation, such as the electron production rate, may be evaluated by solving the statio...

متن کامل

Comparison of MCNP4C, 4B and 4A Monte Carlo codes when calculating electron therapy depth doses

ABSTRACT Background: accurate methods of radiation therapy dose calculation. There are different Monte Carlo codesfor simulation of photons, electrons and the coupled transport of electrons and photons. MCNPis a general purpose Monte Carlo code that can be used for electron, photon and coupledphoton-electron transport.Monte Carlo simulation of radiation transport is considered to be one of the ...

متن کامل

Monte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in ‎the FPGA for electron and proton rays Using the FLUKA Code

In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...

متن کامل

Comparison of ScintSim1 and Geant4 Monte Carlo simulation codes for optical photon transport in thick segmented scintillator arrays

  Introduction: Arrays of segmented scintillation crystals are useful in megavoltage x-ray imaging detectors for image-guided radiotherapy. Most previous theoretical studies on these detectors have modelled only ionizing-radiation transport. Scintillation light also affects detector performance. ScintSim1, our previously reported optical Monte Carlo code for such detector...

متن کامل

Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps

Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007